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Abstract. Advanced machine learning algorithms, such as neural networks, have the potential
to be successfully applied to many areas of system modelling. Several studies have been al-
ready conducted on forecasting structural damage due to individual earthquakes, ignoring the
influence of seismic sequences, using neural networks. In the present study, an ensemble neural
network approach is applied to predict the final structural damage of an 8-storey reinforced
concrete frame under real and artificial ground motion sequences. Successive earthquakes con-
sisted of two seismic events are utilised. We considered 16 well-known ground motion intensity
measures and the structural damage that occurred by the first earthquake as the features of
the machine-learning problem, while the final structural damage was the target. After the first
seismic events and after the seismic sequences, both actual values of damage indices are calcu-
lated through nonlinear time history analysis. The machine-learning model is trained using the
dataset generated from artificial sequences. Finally, the predictive capacity of the fitted neural
network is accessed using the natural seismic sequences as a test set.



P.C. Lazaridis, I.E. Kavvadias, K. Demertzis, L. Iliadis, A. Papaleonidas, L.K. Vasiliadis, A. Elenas

1 INTRODUCTION

In recent years advanced Machine Learning (ML) algorithms, such as Artificial Neural Net-
works (ANN), has been successfully applied to many areas of system modelling. Their success
is based on the thorough processing of data that captures the behaviour of a system. By detect-
ing patterns in the collected data, valuable information can be extracted and predictions can be
made that automate the decision-making process. That fact arrives ML as an advanced tool in
modern engineering modelling.

The object of the present research is the application of neural networks to predict the struc-
tural damage under seismic sequences. The recent disaster held on March 2021 in Tyrnavos-
Elassona region, Thessaly of Greece due to a pair of compatible magnitude (Mw=6.3, Mw=6.1)
[1, 2] shallow earthquakes with more than 1800 damaged or non-serviceable buildings, indicate
the critical role of seismic sequences in the final damage state of buildings again. In the field
of seismic sequences have been conducted many kinds of research to access the contribution of
repeated ground motions on the post-seismic performance state of a building so far, which con-
cluded that aftershocks increase the ductility demands. Amadio et al. [3] studied the influence of
repeated shocks on the response of nonlinear Single Degree of Freedom (SDOF) systems using
different hysteretic models. Hatzigeorgiou and Beskos [4] conducted an exhausting parametric
study on SDOF systems and proposed an empirical relation to calculate inelastic displacement
ratio under repeated earthquakes. Hatzigeorgiou and Liolios [5] examined the nonlinear be-
haviour of Reinforced Concrete (RC) frames subjected to multiple shocks considering a set of
eight frames that varied both at height regularity and dimensioning practice. Hatzivassiliou and
Hatzigeorgiou [6] studied the accumulation of damage and ductility demands due to seismic se-
quence on three dimensional RC structures. Hosseinpour and Abdelnaby [7] studied the impact
of different aspects, as earthquake direction, aftershock polarity and the influence of the vertical
component, on the nonlinear response of RC frames under successive earthquakes. Also, more
recently, Kavvadias et al. [8] and Zhou et al. [9] investigated the correlation between aftershock
related Intensity Measures (IMs) and final structural damage indices.

Previous several studies have been conducted on forecasting of structural damage due to in-
dividual earthquakes, ignoring the influence of seismic sequences. De Latour and Omenzetter
[10] investigated the efficiency of ANNs on the prediction of seismic damage on numerous RC
frames, Alvanitopoulos et al. [11] also examined regular RC structures and, they incorporate
fuzzy layers in ANN configuration (architecture). Later, Morfidis and Kostinakis [12] used fea-
ture selection methods in a dataset of 3 dimensional RC buildings to found the more damage
correlated set of seismic IMs. More recently, the same authors [13] examined the effective-
ness of ANNs on the prediction of damage of non-regular at height structures. Applications
of Recurrent Neural Networks (RNNs) on Earthquake Engineering made by González et al.
[14] and Mangalathu and Burton [15], also Zhang et al. [16] developed a LSTM (Long-Short
Term Memory) network to predict structural response. Convolutional Neural Networks (CNNs)
applied by Li et al. [17] and Oh et al. [18] for the same purpose.

In the present study, ANNs are applied, considering real and artificial sequences of double
seismic shocks, to predict the amount of final structural damage on an already damaged 8-storey
RC frame after a first shock. We use 16 well-known ground motion IMs and the established
damage from the first earthquake as the features of the ML problem, while the final structural
damage (after sequence) employed as the target. Both damage indices after the first seismic
event and after the sequence are calculated through Nonlinear Time History Analysis (NTHA).
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2 SELECTION OF PRIMITIVE DATA

In this section, the primitive data of the problem is described. Specifically, the selection of
the ground motion records and the examined RC frame is presented.

2.1 Ground motion records

Both artificial and natural seismic sequences are considered to take into account, the phe-
nomenon of multiple shocks. After the random combination from a suite of 318 acceleration
records from several earthquakes, the set of artificial sequences determined. More specifically,
every record of the above 318 records suite is combined randomly three times with another
record from the same dataset. As a result, 954 pairs of first and second shock are constructed,
which are utilised as a training set for the specific ML problem. As a test set, we employed
119 natural pairs of sequential shocks, which occurred from 1972 to 2020. The training and
test sets are completely independent with no common record. Both sequential and individual
records are selected and downloaded from ESM [19] and PEER NGA West [20] databases.
The criteria according to the selection of natural sequences conducted are the time gap between
the occurrences of successive shocks which are considered smaller than three months and that
the sequential events are recorded by the same station. As a result of this process collected
119 pairs of successive ground motion acceleration records from 41 real seismic sequences,
recorded by 65 stations. The occurrences time and Peak Ground Acceleration (PGA) data of
the natural sequences listed in Table 1. Every pair concatenated in the same array to compose
the sequential ground acceleration time history. In addition, an intermediate zero ceasing time
gap of 20 seconds added to eliminate the overlap between the building oscillations due to suc-
cessive earthquakes. This process is implemented in Python [21], and the new files containing
the seismic sequence acceleration signals are exported.

2.2 Reinforced concrete structure

Existing buildings designed and constructed without earthquake provisions comprise the ma-
jority of structures both in Greece and worldwide, which causes particular concern about their
response to a potential earthquake. As an example, in this study we examined an 8-storey pla-
nar regular RC frame (Figure 1) designed only for gravity loads by Hatzigeorgiou and Liolios
[5], with mean compressive strength of concrete equal to 28 MPa and steel grade S500s. The
finite element simulation of the frame held in IDARC 2D [22], using spread plasticity con-
cept and three-parameter Park hysteretic model [23]. Every floor considered to have only one
horizontal degree of freedom to into account the huge plane stiffness of RC slab as a rigid
diaphragm. Sparsely placed stirrups with poor anchor details are assumed in order to be in ac-
cordance with obsolete design codes. Thus, a nonlinear deformation-stress model for concrete
without confinement is adopted. As a result, the corresponding concrete curve defined by the
initial modulus of elasticity (E0 = 31.42GPa), the strain at the maximum stress (εc0 = 2h), the
ultimate strain in compression (εcu = 3.5h), the stress at tension cracking σt = 0.0022GPa,
and the slope of the post-peak falling branch (E f b = −6.2GPa). Also, the bilinear curve with
hardening employed for steel with yield and ultimate strengths equal to 550 MPa and 660 MPa
respectively and the corresponding strains equal to 2.75h and 45h, according to Eurocode-2
[24] provisions. The initial elastic fundamental period of the structure is equal to 1.27 seconds.
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2.3 Technicalities

The generation of IDARC 2D input files and the extraction of responses from output files
implemented through GNU Octave [25, 26] code. Using the same high-level programming lan-
guage we automated the multiple analysis process and computed the IMs, which are described
in the next section, for the overall dataset of first and second seismic shocks.

PGA 1st PGA 2nd
Region 1st Sh. Date 2nd Sh. Date Station Code / Name Stream cm

s2
cm
s2

Ancona 1972-06-14 1972-06-21 ANP N-S 216.17 402.88
E-W 206.15 208.0

Friuli 1976-09-11 1976-09-15 BUI N-S 229.04 108.53
E-W 106.41 91.37

GMN N-S 322.02 318.58
E-W 293.6 632.0

Northwestern Balkan Peninsula 1979-04-15 1979-04-15 PETO E-W 298.18 87.4
1979-05-24 BAR N-S 364.69 197.33

E-W 353.28 262.19
HRZ N-S 211.32 65.68

E-W 249.49 75.05
ULO N-S 277.13 32.9

E-W 232.34 30.13
Imperial Valley 1979-10-15 1979-10-15 Holtville Post Office 315 217.24 250.07
Mammoth Lakes 1980-05-25 1980-05-25 Convict Creek 90 411.49 364.47
Irpinia 1980-11-23 1980-11-24 BGI N-S 126.96 30.71

E-W 185.88 33.32
STR N-S 220.44 18.37

E-W 314.41 31.41
Greece 1981-02-24 1981-02-25 KORA Trans 290.82 119.32

Logn 235.91 118.72
Coalinga 1983-07-22 1983-07-25 Elm (Old CHP) 90 509.27 664.53

0 334.97 472.1
Southern Greece 1986-09-13 1986-09-15 KAL1 Trans 264.6 138.13

Logn 227.84 232.78
KALA Trans 290.91 149.6

Logn 212.21 327.68
Spitak 1988-01-07 1988-01-07 GUK N-S 178.23 142.0

E-W 178.81 97.63
Western Caucasus 1989-01-08 1989-01-08 NAB N-S 188.92 192.91

E-W 202.05 213.12
Greece 1990-05-17 1995-06-15 AIGA Trans 198.1 510.79

Logn 116.29 488.87
Western Caucasus 1991-05-03 1991-05-03 SAMB N-S 347.84 204.3

E-W 494.46 120.01
Turkey 1992-03-13 1992-03-15 AI 178 ERC MET N-S 403.55 32.15

E-W 478.36 39.11
Southern Greece 1993-03-26 1993-03-26 PYR1 Trans 218.77 117.3

Logn 107.23 98.62
Northridge 1994-01-17 1994-01-17 Moorpark - Fire Sta 90 189.38 136.86

180 286.27 180.75
Pacoima Kagel Canyon 360 424.6 52.45

1994-03-20 Rinaldi Receiving Sta 228 857.45 519.21
Sepulveda Hospital 270 738.22 100.1
Sylmar - Olive Med 90 593.39 178.32

Umbria Marche 1997-09-26 1997-09-26 CLF N-S 271.52 193.84
E-W 251.78 223.46

NCR N-S 387.53 492.33
E-W 251.0 415.1

Southern Greece 1997-10-13 1997-11-18 KRN1 Trans 117.43 70.44
Logn 116.52 90.77

Bovec 1998-04-12 1998-08-31 FAGG N-S 24.08 23.0
E-W 23.32 26.16

Azores Islands 1998-07-09 1998-07-11 HOR N-S 397.33 80.57
E-W 362.48 90.37

Izmit 1999-08-17 1999-11-12 ARC N-S 206.54 7.39

Continued on next page
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PGA 1st PGA 2nd
Region 1st Sh. Date 2nd Sh. Date Station Code / Name Stream cm

s2
cm
s2

E-W 130.42 7.55
ATK N-S 100.31 16.25

E-W 164.3 16.01
DHM N-S 88.28 17.03

E-W 82.92 17.24
FAT N-S 178.45 34.32

E-W 158.58 23.77
KMP N-S 100.59 14.43

E-W 125.13 17.21
ZYT N-S 116.96 21.41

E-W 107.05 28.88
Greece 1999-09-07 1999-09-07 ATHENS-SEPOLIA B Trans 317.98 58.14

Logn 335.1 69.79
Chi-Chi Taiwan 1999-09-20 1999-09-20 TCU071 N-S 638.91 375.02

E-W 518.53 189.69
TCU129 N-S 390.42 612.17

E-W 929.28 985.77
TCU078 N-S 301.13 379.95

E-W 438.81 261.21
TCU079 N-S 416.3 614.35

E-W 580.9 761.01
Duzce 1999-11-12 1999-11-12 AI 010 BOL E-W 804.95 59.27
Turkey 2003-05-01 2003-05-01 AI 049 BNG N-S 509.25 144.45

E-W 286.03 67.56
L Aquila 2009-04-06 2009-04-07 AQK N-S 346.9 80.4

E-W 323.84 88.45
AQV N-S 535.39 144.13

E-W 644.47 127.22
AVZ N-S 67.71 21.44

2009-04-09 AQA N-S 434.0 56.85
Darfield New Zealand 2010-09-03 2011-02-21 Botanical Gardens S01W 186.4 443.68

N89W 152.43 542.17
Cashmere High School S80E 246.32 342.41
Cathedral College N26W 190.79 376.79

N64E 228.91 469.24
Christchurch Hospital N01W 205.41 339.41

S89W 149.4 356.74
Emilia 2012-05-20 2012-05-29 MRN N-S 258.89 288.73

E-W 257.32 218.65
Northern Italy 2012-06-03 2012-06-12 T0827 N-S 481.11 574.06

E-W 258.35 230.4
Central Italy 2016-08-24 2016-08-24 AQK E-W 49.54 10.59

2016-08-26 AMT N-S 368.51 329.9
E-W 851.09 318.84

2016-10-26 2016-10-26 CMI N-S 334.88 302.66
E-W 707.04 638.53

CNE E-W 545.76 527.19
2016-10-30 ACC N-S 49.29 384.83

E-W 88.35 426.01
CIT N-S 51.02 209.24

E-W 90.49 319.58
CLO N-S 189.45 571.62

E-W 180.02 418.76
CNE N-S 373.26 288.38
MMO N-S 164.82 185.15

E-W 166.99 185.39
NOR E-W 210.87 305.85

2016-10-30 2016-10-31 T1213 N-S 850.26 182.16
E-W 779.54 207.93

2017-01-18 2017-01-18 PCB N-S 575.2 550.63
E-W 400.57 380.9

Near The Coast Of Western Turkey 2019-08-08 2020-10-30 GMLD N-S 441.94 882.26
E-W 660.9 748.75

Table 1: Seismic Metadata for Natural Sequences (Test Set).
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Figure 1: Reinforced Concrete Frame designed by Hatzigeorgiou and Liolios [5].

3 FEATURES AND TARGET OF THE ML PROBLEM

This work examined a reinforced concrete planar frame subjected to both artificial and nat-
ural sequential acceleration records. The ground motion intensity is evaluated, through scalar
measures which are proposed in the literature. The structural damage is accessed in terms of
well-known overall damage indices. These features are presented and explained below.

3.1 Ground motion IMs

As previous studies in the prediction of seismic damage amount, we use as features well-
known ground motion IMs. The simplest of these are the maximum absolute values of ground
accelerations (ag(t)), velocities (vg(t)), and displacements (dg(t)) signals, which referenced as
PGA, PGV, and PGD [27], respectively. Widely used IMs are the Intensity Arias (IA) [28] and
the Cumulative Absolute Velocity (CAV) [29]. Based on the evolution of Intensity Arias over
time the Husid Diagram (Hd) [30] is constructed from which duration parameters calculated.

An inherent feature of signals is the frequency content which varies dynamically against the
time in the case of ground motion records. However, it is often quantified using the equiva-
lent frequency PGA/PGV [27] as if it was a sinusoid signal. Another quantity that has been
proposed and related to the frequency is the Potential Destructiveness Measure after Araya and
Saragoni (IAS) [31], resulting from the zero crossings number of the acceleration signal (uo) per
unit of time.

Various definitions have been given in the past for the strong motion duration of a seismic
excitation, in order to identify the time interval of the signal in which the vast amount of its
total intensity is released. In this work, the strong motion durations defined by Trifunac and
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Num Name Expression Ref. Num Name Expression Ref.

1 PGA max|ag(t)| [27] 9 SMDROG t(Hd = 97.5%)− t(Hd = 2.5%) [33]

2 PGV max|vg(t)| [27] 10 SMDBolt ∆t(a > 0.05g) [34]

3 PGD max|dg(t)| [27] 11 P90
IA(Hd=95%)−IA(Hd=5%)

SMDT B
[27]

4 IA
π

2g
∫ tend

0 a2
g(t)dt [28] 12 arms

√
1

SMDT B

∫ t95%
t5%

a(t)2dt [27]

5 CAV
∫ tend

o |a(t)|dt [27] 13 Ic a1.5
rms ·SMD0.5

T B [27]

6 PGA/PGV PGA
PGV [27] 14 IFV F PGV ·SMD0.25

T B [35]

7 IAS
IA
u2

o
[31] 15 IRG PGD ·SMD

1
3
T B [36]

8 SMDT B t(Hd = 95%)− t(Hd = 5%) [32] 16 SIH
∫ 2.5

0.1 PSV (T,ξ = 0.05)dT [37]

Table 2: Mathematical Expressions of IMs.

SMD

PGA PGV PGD IA CAV
PGA
PGV

IAS T B ROG Bolt P90 arms Ic IFV F IRG SIH

cm
s2

cm
s

cm
cm
s

cm
s

s−1 cm
s

s s s
cm
s2

cm
s2

cm1.5

s2.5 cm · s−0.75 cm · s
1
3 cm

mean 305.0 29.5 55.5 135.6 747.7 13.1 3.5 13.6 17.0 11.9 16.3 77.1 2320.5 53.2 152.2 91.5

std 254.0 24.9 132.0 190.4 519.3 8.8 5.2 10.0 11.2 10.1 26.8 65.3 2516.4 42.8 417.5 73.5

min 32.7 1.2 0.1 0.7 28.0 1.7 0.0 0.6 1.9 0.0 0.1 7.4 55.3 1.4 0.1 2.1

25% 124.7 10.5 2.7 20.6 325.2 7.2 0.3 6.1 8.6 4.8 1.5 30.9 639.9 18.6 5.6 31.5

50% 218.8 23.8 10.5 81.1 693.1 11.3 1.5 10.4 13.6 10.2 4.7 54.2 1544.1 43.2 21.5 76.5

75% 414.2 41.5 40.5 157.2 1008.6 16.6 4.9 18.0 22.8 14.8 16.9 102.8 2916.0 77.3 98.2 134.0

max 1465.2 130.4 1314.2 1332.4 3119.3 75.5 41.5 46.8 55.5 58.6 131.1 286.3 13323.4 201.8 4625.5 387.1

Table 3: Descriptive Statistics of 2nd Seismic Shock IMs (Train Set-837 examples).

Brady (SMDT B) [32], and by Reinoso, Ordaz and Guerrero (SMDROG) [33] are assumed. Both
of these are based on the time evolution of Arias Intensity according to Husid Diagram. Also,
the bracketed duration as described by Bolt (SMDBolt) [34], which is defined by the first and
last exceedance of the 5 percent of g, is employed.

Combining the above parameters results in more complex measures such as Power P90 [27],
arms [27], Characteristic Intensity (Ic) [27], the potential damage measure according to Fajfar,
Vidic and Fischinger (IFV F ) [35] and the IM after Riddell and Garcia (IRG) [36].

Also, we did not use seismic parameters that depend on the fundamental period, like indi-
vidual spectral values of the structure due to the elongation of the initial elastic period before
the start of the second seismic event. Instead, we employed Housner Intensity [37] (SIH) which
accumulate spectral pseudo-velocities to a constant range of possible eigenperiods and presents
a high correlation with the structural damage [38, 12, 39]. The calculation of spectrums for the
above purpose implemented using OpenSeismoMatlab [40].

All of the mathematical expressions for employed IMs summarised in Table 2. Tables 3 and
4 present the descriptive statistics of the IMs corresponding to the second seismic shocks of the
training and test datasets, respectively. We observed that the training set covers the major range
of the test set values. From the initially 954 artificially generated sequences, finally we hold
837 of them, which the NTHAs did not present convergence problems.
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SMD

PGA PGV PGD IA CAV
PGA
PGV

IAS T B ROG Bolt P90 arms Ic IFV F IRG SIH

cm
s2

cm
s

cm
cm
s

cm
s

s−1 cm
s

s s s
cm
s2

cm
s2

cm1.5

s2.5 cm · s−0.75 cm · s
1
3 cm

mean 239.2 19.4 15.8 91.4 448.5 16.0 2.5 9.2 11.9 5.2 14.6 69.0 1690.4 31.5 34.1 62.8

std 212.3 20.9 42.4 184.8 571.7 10.0 5.8 7.7 9.3 7.1 26.1 66.3 2240.4 37.3 99.2 75.7

min 7.4 0.8 0.0 0.2 29.3 2.9 0.0 0.5 0.7 0.0 0.0 1.8 12.5 1.4 0.1 1.5

25% 68.7 4.5 0.7 3.4 133.3 9.2 0.1 3.9 5.5 0.2 0.5 17.7 189.3 7.8 1.3 12.5

50% 185.4 10.8 2.6 15.4 234.9 13.3 0.2 7.0 9.7 2.5 2.8 42.2 616.8 16.2 4.6 31.7

75% 369.7 30.1 9.4 99.5 588.2 20.6 1.2 11.0 14.3 7.8 18.9 108.7 2527.0 42.0 20.1 80.7

max 985.8 91.8 277.5 1165.6 3354.8 53.0 32.3 37.4 44.2 42.7 170.7 326.2 11393.9 185.6 737.3 304.0

Table 4: Descriptive Statistics of 2nd Seismic Shock IMs (Test Set-119 examples).

3.2 Damage indicators

In the present section, the damage indices considered in this study are described. The struc-
tural damage is used both as an input feature to take into account the existing damage due to the
first seismic shock and as a target of the ML problem to describe the accumulated damage after
the occurrence of the second earthquake.

3.2.1 Damage index after Park and Ang (DIPA)

The damage index, proposed by Park and Ang [41], results from summing the contributions
of the maximum flexural responses and the hysteretic energy consumed in the plastic hinges
areas and is calculated by Equation (1) modified by Kunnath et al. (Equation (2)) [42]. The
total damage index [22] is calculated as a weighted average of the sub-factors, weighted by the
percentages of the total energy consumed by each member of the construction, according to
Equation (3). The overall damage index DIG,PA as close to zero as possible implies a complete
damage-free structural system with an elastic response but when tends to unit characterises a
near collapse structure. For abbreviation reason in the next sections DIG,PA referred to simple
as DIPA.

DIPA =
δm

δu
+

β

Qyδu

∫
dE (1)

DIPA,component =
θm−θr

θu−θr
+

β

θuMy
Eh (2)

DIG,PA =
∑EiDIPA,component

∑Ei
(3)

where δm is the maximum element displacement response, δu is the ultimate element displace-
ment, β is the model constant parameter for strength deterioration proposed by Park et al. [43],∫

dE is the cumulative hysteretic energy consumed by the element during its response, Qy is the
yield strength of the element, θm is the maximum element rotation during the time history re-
sponse, θu is the ultimate capacity of the element, θr is the recoverable element rotation during
unloading.
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3.2.2 Damage index after DiPasquale and Cakmak (DIDC)

During high-intensity seismic events, it is known that the cross-sections in plastic hinges
areas of a building can be severely cracked or even present steel yielding, resulting in a stiffness
reduction and consequently degradation of the overall stiffness of the structure. Therefore, it is
expected that the building will become more flexible and its fundamental period increase. On
the above mentioned increasing of the fundamental period due to inelastic dynamic response of
a building, based the DiPasquale and Cakmak [44] damage index, calculated according to (4):

DIDC = 1−
T0initial

T0equivalent

(4)

T0initial : The fundamental period before the starting of analysis.
T0equivalent : The fundamental period at the end of the analysis.

3.2.3 Max Inter-Storey Drift Ratio (MIDR)

The Max Inter-Storey Drift Ratio [45] during the seismic response of the construction can
be used as a measure of the performance it has shown against the earthquake it has hit. The
increase in the relative displacements results in an increase of the required floor ductility with
similar effects for the rotation and curvature ductility in the areas of the plastic hinges of each
component and their cross-sections respectively. So estimating the magnitude of generalised
displacements such as MIDR can indirectly aggregate local damages and quantify the total
degree of structural damage define by (5).

MIDR =
|u|max

h
100% (5)

|u|max: Max absolute interstorey deformation recorded during the time history response
h: Storey height

3.2.4 Residual Max Inter-Storey Drift Ratio (RMIDR)

Residual displacements cause an important role in the post-seismic performance state of a
building to indicate the established damage. Also, consist a critical variable for the repairability
of seismic damaged structures [45]. We included it in the problem and evaluate it as the residual
maximum inter-storey drift ratio in the post-seismic state, after the end of building oscillation.

4 APPLICATION OF NEURAL NETWORKS

The most conventional used Neural Network configuration is the Multi-Layer Perceptron
(MLP) [46], which is considered as the simpler learning architecture, consisted from of a few
linear layers which are interconnected successively. Each of them receive input from the pre-
vious layer, which is multiplied matricialy by appropriate weights, subsequently a vector of
biases is added. Finally, in every element of the previously defined vector, a nonlinear function
is applied to produce the activations of the following layer. This forward process continues until
the regression is completed by concluding with the target value from the output layer. The final
output values are compared with the real ones, and the regression error is calculated using an
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appropriate loss function. The weights of all layers are updated one by one using Stochastic
Gradient Descent to minimise the cost function. Data scientists, based on their assumptions and
experience, tune their numerous parameters by relating them to the specific problems they need
to solve, making use of the available training datasets. Thus, the application of MLP to realistic
problems is still challenging and specialised for each problem.

4.1 Gaussian kernel functions

Since the problem under consideration essentially involves the prediction of values based on
similar training data samples, kernel function modelling was chosen, which is an appropriate
solution as it allows for accurate modelling of data with complex dependencies between input
features and target data. They are essentially representations of the input vectors x in ℜ, which
have specific form and properties and are highly generalisable. The appropriate transformation
of the input vectors in order to achieve a more easily generalisable solution to the regression
problem first requires the transformation of the input space into a transformed feature space with
a higher dimension and with a nonlinear representation. The transfer of the problem in a higher
dimensional feature space is achieved by the kernel method. In this work, the Gaussian Radial
Basis Function kernel (GRBFk) was used, which is appropriate in cases where the identification
or manipulation of real values, which tend to cluster around an average value, is required.

4.2 Extreme learning machines

In this paper, a holistic Single-hidden Layer Feed Forward Network (ShLFFN) shallow ar-
chitecture approach with N neurons in the hidden layer, randomly chosen input weights and
random values of bias constants on the hidden layer neurons, while the output weights are com-
puted by a single matrix multiplication, which automates and optimally solves the problem, was
used. These ShLFFN architectures, called Extreme Learning Machines (ELMs) [47], used in
complex problems, due to their ability to access any continuous function. Also, the networks
in question can learn N samples with accuracy, while their learning speed can be even thou-
sands of times faster than conventional Feed Forward Network Networks, as their training is
not based on time-consuming repetitive processes such as the algorithm. Back Propagation,
which changes the weights of the neural network by estimating the quadratic error between the
target vectors and the actual network outputs, for all training samples, which are entered into
the network in a random serial manner and for many repetitions (epochs)

Driven by the observation that the first stage of the algorithm can be considered as a process
of mapping the training vectors into a higher dimensional vector space, in the hidden layer we
chose a sufficiently large number of neurons (at least twice the input parameters) so that the
algorithm has the property of a universal approximator and can train ShLFFN efficiently. More
specifically, the input data are mapped to a random Ñ-dimensional space with a discrete training
set N where (xi, ti) with i ∈ [1,N] xi ∈ℜd and ti ∈ℜc. The output of the network presented in
Equation (6).

fL(x) =
Ñ

∑
i=1

βihi(x) = h(x)β , i ∈ [i,N] (6)

where β = [β1, . . . , βÑ ]
T is the weight matrix between hidden and output neurons h(x) = [g(x1),

. . . , g(x2)] is the output of hidden neurons for the input x, and g(xi) is the output of ith hidden
node. Based on N length training set {(xi, ti)}N

i=1, the ELM can solve the learning problem
Hβ = T, where T = [t1, . . . , tN ]T are the target labels and the output matrix of the hidden layer
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output presented in Equation (7).

H(W, b, X) =


g(w1 ·x1 +b1) · · · g(wÑ ·x1 +bÑ)

... . . . ...

g(w1 ·xN +b1) · · · g(wÑ ·xN +bÑ)


N×Ñ

(7)

Before the training, the weight matrix W and the bias vectors b initialised randomly in the inter-
val [−1, 1], given w j = [w j1, w j2, . . . , w jm]

T and β j = [β j1, β j2, . . . , β jm]
T .The output weight

matrix of the hidden layer H came up from Equation (8), given the training data and the activa-
tion function g.

H = g(Wx+b) (8)

The hidden layer (Figure 2) is responsible for transforming the input data into a different repre-
sentation. The transformation is achieved in two steps:

• First Step. The input data is input to the hidden layer using the weights and corresponding
values of the input layer.

• Second Step. The data is transformed based on a nonlinear transformation function.

Finally, the output weights β could compute from Equation (9).

β = H∗T (9)

where H∗ is the Moore-Penrose generalised inverse matrix for H.

4.3 Bootstrap sampling and ensemble technique

Bootstrap sampling [48] is adopted so that different subsets of the dataset can train the model
in the most fruitful way, to increase the efficiency of the method. Bootstrap sampling is the pro-
cess of applying progressively larger random samples until the accuracy of the neural network
is improved. Every sample is used to train an individual model and the results of each model are
summarised by “voting”, i.e. for any input vector, each classifier predicts the output variable
and finally, for every variable the value with the most “votes” is chosen. This methodology,
which belongs to the Ensemble methods, is called Bagging and has many advantages, such as
reducing covariance. The Ensemble technique [49] is used due to the fact that in the specific
problem, the prediction results show multivariability, which can be attributed to the sensitivity
of the correlation models to the data and the complex relationship that describes them. Also,
an important advantage gained by the proposed system is focused on the fact that it offers more
efficient and stable prediction model, since the overall behaviour of multiple MLP ANNs is
less noisy than a single one, and in any case reduces the overall risk of a particularly inaccu-
rate values. Finally, in order to evaluate the reliability of the implemented bagging method, the
variance of the expected error is checked to be around the mean error value.

5 RESULTS

This section presents both the results from NTHAs in terms of overall seismic damage in-
dices and the neural network testing in terms of correlations between real and predicted values.
In the case of structural damage indices we present both the results of the first shocks NTHAs
adopted between the inputs of the ML problem (Figure 2) and the corresponding after the sec-
ond shocks which employed as targets of the problem.
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Figure 2: An ELM neural network architecture uses as input arguments both damage index from the first seismic
event and the IMs of the second event to predict the final damage index (after second event).

5.1 Results of NTHAs

The results of NTHAs represented in terms of damage indices after the occurrence of the
first shocks and after the sequences (Figure 3). As we compare the distributions of damage
indices after the first and second shock, we see a clear increase after the second shock, both in
the training and test set. The increase is higher in the case of DIDC. The maximum value of
this damage index seems to be constant around 0.7 both in the training and test set. The other
damage indices have a smaller increase but a clear offset of the upper-end value both to training
and test set as we shown in Figures 3a and 3b respectively.

5.2 Results of ANN testing

Since the model described in Section 4, trained using the dataset generated from artificial
sequences, several correlation coefficients calculated between predicted and actual values of the
targets on the test set (natural sequences) to evaluate the effectiveness of the fitted ML model.
The results of three correlation coefficients (Pearson, Kendall and Spearman) and two error
metrics, Mean Absolute Error (MAE) and Root Mean Square Error (RMSE), for the final fitted
model are presented in Table 5. We can observe that the damage indices with the best predictive
behaviour are the MIDR and DIPA which display the higher values of Pearson, Kendall and
Spearman coefficients. The relation between predicted and the actual values of DIDC looks to
be quite linear since the values of Pearson and Spearman coefficients are similar and quite high.

Pearson Kendall Spearman MAE RMSE

DIPA 0.9104 0.7956 0.9366 0.0574 0.1059
DIDC 0.8875 0.7140 0.8898 0.0648 0.0867
MIDR 0.8960 0.8277 0.9582 0.3542 0.7933
RMIDR 0.8316 0.7488 0.9146 0.2956 0.6870

Table 5: Results of correlation between actual and predicted values on the test set.
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(a) Violin plots of damage indicators distributions of the training set (837 artificial sequences).
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(b) Violin plots of damage indicators distributions of the test set (119 natural seismic sequences).

Figure 3: Violin plots of damage indicators distributions.

6 CONCLUSIONS

In the present study, we used an ensemble neural network methodology to predict the final
damage of an 8-storey RC frame under successive earthquakes. For this purpose, we employed
a training dataset of 837 artificial seismic sequences and a test set of 119 natural seismic se-
quences. Finally, the main conclusions are summarised as follows:

• In both training and test sets, the structural damage under the sequences is increased in
comparison with the corresponding damage that occurred after the initial shocks.

• In general, the predictive capacity of the configured Ensemble Neural Network seems to
be quite satisfactory.

• The Ensemble Neural Network presents a higher performance in forecasting the final
structural damage in terms of DIPA (damage index after Park-Ang) and MIDR (Maximum
Inter-storey Drift Ratio).

For future machine learning applications in structural damage prediction due to successive
earthquakes enriched dataset of natural seismic sequences may be considered. Moreover, a wide
range of structural systems should be examined in order to incorporate structural attributes as
ML problem input features.
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