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Abstract 

This paper presents uniform risk spectra for negative stiffness systems that do not exhibit 
hysteretic damping, named Negative Stiffness Bilinear Elastic (NSBE) systems. The NSBE os-
cillator can be used to describe the dynamics of deformable rocking systems with or without 
restraining systems flexible enough to lead to an overall negative stiffness. It can also be used 
to describe rocking systems equipped with curved extensions at their base. It has been shown 
that the response of an NSBE system can be well predicted using the response of a Zero Stiff-
ness Bilinear Elastic (ZSBE) system, which is a bilinear system of constant restoring force. 
The ZSBE system is a single parameter system; therefore it is simple to construct design spec-
tra for it. 

For a wide range of ZSBE system strength values, this paper employs Incremental Dynam-
ic Analysis using 105 ordinary (non-pulse-like, non-long-duration) ground motions to obtain 
the fragility functions for predefined limit-states of the ZSBE seismic response. Fragility func-
tions per limit-state are convolved with the seismic hazard to compute the Mean Annual Fre-
quency of exceedance (MAF). For this study, the seismic hazard curve for a site at Athens 
Greece is used as it is obtained via probabilistic seismic hazard analysis. Finally, uniform 
risk spectra per limit-state are obtained by computing the MAF for all the ZSBE oscillators. 
These spectra can be used for the design of NSBE systems, including rocking oscillators.  
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1 INTRODUCTION 
Rocking has been proposed as an alternative design method in seismic prone regions be-

cause it reduces foundation moments and results in resilient structures [1-19]. Differently 
from structures designed to yield, rocking systems present negative lateral stiffness after uplift.  

The negative stiffness value of the free-standing block is defined by its geometry (Fig. 1). 
Its negative stiffness, however, can be modified by the introduction of restrainers flexible 
enough to keep the post-uplift stiffness negative (Fig. 2a) [3, 5, 13, 20-22], or by equipping 
the blocks with extended curved ends (Fig. 2b) [14, 15]. These solutions increase the maxi-
mum displacement the rocking system can achieve before overturning, without affecting its 
uplifting force. The flexible restrainers also act as a redundant mechanism for the rocking 
structures, a desired mechanism by practicing engineers.  

 
Figure 1. Free-standing rigid rocking block. 

 
Figure 2. (a) Restrained rigid rocking block, and (b) Curved-base rigid rocking block. 

Seismic codes adopt the uniform hazard spectrum concept. The spectrum is constructed us-
ing a probabilistic framework and provides seismic actions with a given probability of ex-
ceedance. Recently, Luco et al. [23] proposed the Uniform Risk Spectra (URS), which 
provides seismic actions that results in structures with uniform risk of damage and/or collapse, 
an indicator much more meaningful for decision makers and users of the designed structure. 

Both the uniform hazard spectrum and uniform risk spectrum are useful tools that allow 
engineers to design structures by only estimating its fundamental period and damping ratio. 
The elastic spectra, however, cannot be used for designing rocking structures [24]. The inher-
ent negative stiffness of rocking systems would oblige engineers to carry out time-consuming 
time history analyses when designing such structures. 

Reggiani Manzo and Vassiliou [25, 26] have observed that rocking systems having the 
same uplift force and being far from their failure point will exhibit roughly equal displace-
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ment demand, independently of their post uplift stiffness. Therefore, the displacement of rock-
ing structures of uplift force fup can be computed using as a proxy the displacement of a bilin-
ear oscillator of uplift force fup and infinite displacement capacity (Zero Stiffness Bilinear 
Elastic (ZSBE) oscillators). This simplification allows the construction of spectra for a range 
of negative stiffness systems: free-standing rocking frames, restrained rocking frames, or 
rocking frames with curved ends. Therefore, the design of negative stiffness systems can be 
accomplished using a spectrum and avoiding time history analysis. 

In an attempt to propose a simplified design methodology for negative stiffness systems 
that also introduces the uncertainty of seismic action, this paper presents uniform risk spectra 
for rocking structures, using the ZSBE oscillator proxy.  

Previous studies have presented fragility curves for rocking structures [27-37], which also 
consider the random characteristic of seismic actions. Theses curves, however, were con-
structed using complex models, or in other cases, considering the classical description of the 
motion of rocking blocks by its tilt angle. Neither approach allows the construction of a single 
rocking spectrum that covers all range of systems with negative post-uplift stiffness. On the 
other hand, the uniform risk spectra proposed herein can be used for any system that presents 
negative post-uplift stiffness and does not present hysteretic damping.  

2 THE ZERO STIFFNESS BILINEAR ELASTIC SYSTEM (ZSBE) AS PROXY 
FOR NEGATIVE STIFFNESS BILINEAR ELASTIC SYSTEMS (NSBE) 

2.1 The Negative Stiffness Bilinear Elastic System 
The Negative Stiffness Bilinear Elastic (NSBE) system can describe the dynamics of free-

standing (Fig.1), restrained (Fig.2a), and curved-based (Fig.2b) rocking structures, or any oth-
er deformable system that presents negative post-uplift stiffness and does not exhibit hysteret-
ic damping.   

Fig.3 presents the NSBE oscillator, and its displacement-restoring force relationship. Up 
until uplift, the system behaves linearly with a positive stiffness (kpos), representing any de-
formability the system might present before uplifting. After uplifting, the tangent stiffness be-
comes negative (kneg). The displacement capacity (ucap) is defined not by material failure, but 
by the displacement where the restoring force becomes negative. Therefore, for an unre-
strained rocking column, the displacement capacity is equal to its width. 

 
Figure 3. (a,b) NSBE system; and (c) its displacement-restoring force relationship. 

Based on its displacement-force relationship (Fig.3c), the oscillator’s equation of motion is: 

 ( )( ) ( ) ,  ( )up g up
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The upper sign in Eq.2 corresponds to positive displacements, and the lower sign to nega-
tive displacements. 

Impact damping is the only source of energy dissipation, implying that the ends of the 
rocking element are protected from damage [38]. When the system’s displacement equals to 
the uplift displacement (uup), the integration is halted, and its post-impact velocity is calculat-
ed by a coefficient of restitution (rc): 

 postimpact
c

preimpact

u
r

u
=




 (3) 

Herein, a coefficient of restitution equal to 0.95 is assumed, corresponding to relatively 
slender structures.  

2.2 The Zero Stiffness Bilinear Elastic System 
Fig. 4 presents the displacement-force relationship of the Zero Stiffness Bilinear Elastic 

(ZSBE) system. The system presents the same equation of motion and assumptions of the 
NSBE system when its displacement capacity tends to infinity, resulting in a system with zero 
post-uplift stiffness (kneg = 0). 

The ZSBE can be used as a proxy for the prediction of the response of the NSBE [25,26]. 
Hence, studying the response of a ZSBE of a given fup and uup suffices for the description of 
the response of all NSBE of the same fup and uup, independently of their ucap. Therefore, spec-
tra providing umax of the ZSBE as a function of fup for a given uup can be used for the design of 
NSBE systems. Fig. 5 presents such a spectrum, extracted from Reggiani Manzo and Vassil-
iou [26]. It refers to uup=0.0005m and it gives the median response for a set of ground motions 
selected and scaled as discussed in [26]. 

 
Figure 4. Displacement-restoring force relationship of the ZSBE systems. 

2.3 Equal Displacement and Equal Energy Rules for Negative Stiffness Systems 
Reggiani Manzo and Vassiliou [25, 26] proposed that the displacement demand of NSBE 

and ZSBE systems can be related by two different rules: the Equal Displacement rule and the 
Equal Energy rule. 

The Equal Displacement rule assumes that the NSBE and ZSBE system will experience the 
same displacement demand (Fig. 6a): 

 ,
, ,

,

1dem NS
dem NS dem ZS ED

dem ZS

u
u u

u
γ= → = =  (4) 
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Figure 5. Design spectrum for negative stiffness systems. 

In which, γED is the ratio of the displacement demand of the NSBE system (udem,NS) to the dis-
placement demand of the ZSBE system (udem,ZS).  

The Equal Energy rule assumes that the displacement-force curves of both systems pro-
duce the same work. In other words, it assumes that the shaded areas of Fig. 6b are equal. 
Therefore, the ratio (γEE) of udem,NS to udem,ZS is: 

 
( ) ( ),,

, , , ,

2cap up cap dem ZS upcapdem NS
EE

dem ZS dem ZS dem ZS dem ZS

u u u u uuu
u u u u

γ
− − ⋅ +

= = − ⋅  (5) 

 

 
Figure 6. (a) Equal Displacement rule; and (b) Equal Energy rule. 

3 PROBABILISTIC FRAMEWORK 
Using the ZSBE proxy, the uniform risk spectrum for negative stiffness systems is a plot of 

the displacement demand of the system as a function of its normalized strength, in which all 
ordinates of the plot present the same mean annual frequency (MAF) of exceedance (Fig. 7b). 
It can also be interpreted as an iso-MAF contour plot of the seismic risk surface, which is a 
3D plot of the probability of exceeding a displacement demand for a range of systems with 
different normalized strengths (Fig. 7a).  
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Figure 7. (a) Seismic risk surface with an iso-MAF contour plot highlighted; (b) Uniform risk spectrum. 

The calculation of the probability of exceedance, also known as risk assessment, can be 
performed using the risk integral, the same framing equation of PBEE (Performance Based 
Earthquake Engineering) framework [39]:  

 ( ) ( ) ( )|LS C CEDP EDP P EDP EDP IM d IMλ λ λ= > = > ⋅∫  (6) 

In Eq. 6, λLS is the mean annual frequency (MAF) of exceeding (i.e., violating) a limit state 
(LS). P(EDP > EDPC | IM) is the fragility function, which represents the probability that the 
engineering demand parameter (EDP) exceeds the capacity threshold of EDPC associated with 
LS for any given level of the ground motion intensity measure (IM), and λ(IM) is the MAF of 
exceeding a given value of IM, which can be retrieved from the site-specific seismic hazard 
curve. 

In this paper, the maximum horizontal displacement of the system, or as mentioned before, 
the displacement demand, was adopted as EDP. Note that Eq.6 gives a single-point of the 
seismic risk surface. To construct the complete surface, the equation had to be evaluated for 
several limit states and a range of systems with different normalized uplifting strength. Herein, 
the probability of exceedance was calculated for 3001 limit states, ranging from 0 to 3m, in 
steps of 0.001m; and 301 different systems with a normalized strength varying from 0.1 to 1.0, 
in steps of 0.05. 

Based on Eq.6, λLS combines the structural response and the seismic hazard at the site. The 
fragility function, or vulnerability analysis, gives us information about the structural response 
of the system, connecting the EDP to the IM. Given that all results are conditioned on the IM, 
the IM has to be carefully chosen [40]. The adequate IM for rocking structures, however, is 
still an open discussion in the engineering community [27–30, 36]. Herein, the peak ground 
velocity (PGV) was adopted as IM, with further studies pending. 

Incremental dynamic analyses (IDA) [41] were carried out to obtain the fragility functions 
for each predefined limit state and different system. A set of 105 ordinary (non-pulse-like, 
non-long-duration) ground motions was used in each incremental dynamic analysis. The 
ground motions were gradually scaled so that their PGV is equal to 

( ) ( )[ ]  cm/s,1: 0.5 : 20 25 : 5 : 200PGV = , in which PGV  is the geometric mean of the PGV 
of the two horizontal components x and y of the individual ground motion: 

 x yPGV PGV PGV= ⋅  (7) 

The model considers only planar response. Therefore, the nonlinear dynamic analysis was 
carried out only for one of the components of each ground motion (arbitrary component); the 
component was once chosen randomly, and then used for all analyses. After carrying out the 
analyses for all different scales and ground motions, the fragility function for each limit state 
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and system can be easily obtained on an EDP-basis or an IM-basis approach [40]. Here, the 
first was employed where for each IM-step value (stripe) the probability of exceeding the de-
terministic EDP capacity threshold is calculated as:  

 ( ) number of records with 
|

total number of records
C

C
EDP EDP

P EDP EDP IM
>

> =  (8)  

The second curve necessary for the convolution represented by Eq.6 is the site-specific 
seismic hazard curve. In this study, a seismic hazard curve for a site at Athens, Greece was 
assessed via the open source platform OpenQuake [42]. The 2013 European seismic source 
model [43] was used for the calculations. The site-specific seismic hazard curve for the PGV   
is presented in Fig. 8. 

 
Figure 8. Site-specific seismic hazard curve for PGV  in Athens, Greece.  

At last, after carrying out the vulnerability analysis for all desired systems and limit states, 
the uniform risk spectrum for a given MAF can be obtained as a cross-section of the seismic 
risk surface.  

4 RISK ASSESSMENT 
Herein, uniform risk spectra for quasi-rigid ZSBE systems (uup = 0.0005 m), computed us-

ing the probabilistic framework of the previous section, is presented.  

4.1 Fragility Curves 
As the first step of the vulnerability analysis, fragility curves were computed for the differ-

ent limit states and systems. As mentioned before, the ground motions were gradually scaled 
in stripes of ( ) ( )[ ]PGV  cm/s,1: 0.5 : 20 25 : 5 : 200= . A finer discretization for smaller values 

of PGV was necessary because low PGV ground motions might have small overturning po-
tential, but they have large probability of occurrence resulting in significant contribution to 
the convolution of Equation 6. 

Fig. 9 presents the fragility curve obtained using a coarse mesh (ranging from 1 to 100 
cm/s, in steps of 5 cm/s) and using the finer mesh for a system with normalized strength 
fup/(mg) = 0.15 and limit state of 9.0 cm. Because the fragility curve is created by a linear in-
terpolation between the values for which the probability was calculated, the coarse mesh can-
not capture the peaks and troughs as accurately as the finer mesh. If the risk quantity is 
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calculated using both fragility curves presented in Fig.9, the one with the coarse mesh overes-
timates the risk by 12%. 

 
Figure 9. Fragility curves obtained for coarse and fine mesh. 

4.2 Uniform Risk Spectra 
Fig. 10 presents the uniform risk spectra for negative stiffness systems with 2%, 10%, and 

50% probability of exceedance in 50 years, for a site in Athens, Greece. These probabilities 
correspond to a MAF of 0.0004, 0.0021, and 0.0139 per year, as given by Eq. 9, in which p is 
the probability of exceedance and T, the number of years considered. 

 ln(1 )MAF p
T

− −
=  (9) 

It can be observed that the spectrum with smaller probability of exceedance (2% in 50 
years) predicts larger displacement demands, while the spectrum with larger probability of 
exceedance (50% in 50 years) predicts smaller displacement demands.  

The figure also depicts an interesting characteristic: if the curves were scaled by two dis-
tinct factors at x- and y-axes, they would collapse into a unique curve. This a very remarkable 
characteristic that might allow negative stiffness systems to be designed for different perfor-
mance scenarios using a unique curve.  
 

 
Figure 10. Uniform risk spectra for negative stiffness systems with 2%, 10%, and 50% probability of exceedance 

in 50 years, for a site in Athens, Greece. 
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5 CONCLUSIONS 
This paper presented uniform risk spectra for negative stiffness systems, using the ZSBE 

proxy. It explains in detail the probabilistic framework necessary to construct such spectra, 
highlighting possible source of errors. It presents uniform risk spectra for three probabilities 
of exceedance: 2%, 10%, and 50% in 50 years. The uniform risk spectrum, however, can be 
computed for any given MAF and site, following the framework presented herein.  

Interestingly, it seems that the uniform risk spectra for different MAF can be scaled in the 
x- and y-axes, collapsing to a unique curve. This characteristic would make the design of neg-
ative stiffness systems even simpler: one “master” curve could be use to design negative stiff-
ness systems with different displacement capacities for different performance scenarios. 

Further studies are still necessary on which is the adequate intensity measure to be adopted 
for these spectra. 
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